Requirements for Data-Driven Social Service Policy Evaluation: A Case-Study in Housing First

Bart Gajderowicz, Mark S. Fox, Michael Grüninger Center for Social Service Engineering Mechanical and Industrial Engineering University of Toronto

> Third Annual Data Sharing Initiative Calgary, Alberta, Canada May 28th

Outline

- 1. Motivation
- 2. Goals and Objectives
- 3. Requirements for Semantic Interoperability
- 4. Existing Ontologies
- 5. Use Cases
 - Use Case 1: Mapping SMIS to HIFIS
 - Use Case 2: CHF Housing First
 - Ontology Engineering
 - Ontology of Client Needs

Motivation

- Canada 2016 [Gaetz, 2016]
 - 35,000 homeless Canadians on any given night
 - (+17.5% from 2014)
 - 27% women, 19% youth, 24% aged 50+
- How to measure progress towards reducing homelessness?
 - Definitions of homelessness vary.
 - Causes of homelessness vary.
 - Homelessness is a complex problem:
 - Each city and province has unique challenges.
 - Each person living in poverty has unique life experiences and challenges.
 - Each site has different metrics, stakeholders, timelines, etc.

Goals and Objectives

- Goal
 - Enable data-driven policy evaluation by providing means to combine data from various sources.
- Objectives
 - Create a measurable high-fidelity model of service delivery.
 - Analyze data from multiple data sources, studies, and locations.
 - Create an ontological representation of target datasets.
 - Support the semantic interoperability between each dataset.

Challenge: Semantic Interoperability

• Ability of computer systems to exchange data with unambiguous, shared meaning.

• A requirement for machine reasoning, knowledge discovery, and data federation across information systems.

Semantic Interoperability

The Source Of Problem

The Source Of Problem

Ontology Design is a Way of Thinking

- What are the core concepts and properties that span social service data?
 - To what extent can we generalize them and still be useful?

- What are the key distinctions?
 - Can we formally define necessary and/or sufficient conditions (using properties) for something to be an example (member) of a concept?
 - Examples:
 - What is a homeless client? relatively versus absolutely homeless?
 - What is a resource? available beds? employee skills?
 - What prevents a client from meeting a shelter's curfew?
 - What motivates clients? short-term goals? long-term goals?

Approach: Ontology

- Ontology
 - A shared understanding of a particular domain through conceptualization, and the use of explicit definitions and the relationships between those concepts [Uschold, 1996].
 - An **Ontology** is the specification of:
 - a **Terminology**, that specify the classes, properties and data types of the domain, and
 - **Axioms**, that define and constrain the interpretation of the terminology (in FOL, DL), and can be used to infer new information

Ontology Components

- ••Classes and Properties
- ••Taxonomy and Inheritance

for what relation or from any point of view. **Definition** [.dɛfr'n signification of a w essential to the cor an explanation of l

Definitions and Constraints

- ••Class Definitions (in Logic)
- Automated classification

Micro-Theory

- ••Axioms/Rules
- Deduction answering questions

Ontology Hierarchy

Existing Ontologies

- 1. Shelter Ontology for Global City Indicators (GCI) [Wang, 2015]
 - Semantic representation of the ISO 37120, 100 indicators for sustainable development.
 - Includes concepts of shelters, slums, households and homelessness.
 - Limited definition of homeless a person and their needs.
- 2. The INSPIRE Ontology [Pourabbas, 2017]
 - Focused on processes and resources of the service provider.
 - A client may have a physical need, a social need, or a combination of the two. Each need also has an urgency associated with it
- 3. Open Eligibility Project [OEP, 2017]
 - A taxonomy of services offered to clients.
 - No details about client needs are included.
- Problem:
 - Majority focus on services only.
 - Clients model is of low-fidelity.

Use Case 1: Mapping SMIS to HIFIS

Use Case 1: SMIS Data Dictionary

- SMIS: Shelter Management Information System [SMIS, 2014]
 - Owner: City of Toronto
- 11 Forms used to register, evaluate, and log clients in the system.
 - intake, admission, discharge, service restrictions, admission status, referrals.
- Classes covered:
 - Client
 - Service Provider
 - Resources

Use Case 1: HIFIS Data Dictionary

- HIFIS: Homeless Individuals and Families Information System [HIFIS, 2015]
 - Owner: Government of Canada
 - Draft: May 2015
- Data dictionary:
 - Includes 111 tables and an additional 118 lookup tables.
- Classes covered:
 - Client
 - Society
 - Provider
 - Services

Use Case 1: SMIS Ontology (knowledge graph)

Use Case 1: HIFIS Ontology (knowledge graph)

Use Case 1: Mapping SMIS to HIFIS

Use Case 1: Mapping Client Needs

Use Case 2: CHF Housing First

- Objective:
 - Identify needs of clients.
 - How do needs change as clients participate in the HF program?
 - Connect client needs to services being offered, from the client's perspective.
- Method:
 - Data: SPDAT Form, taken at 3-month intervals.
 - Identified, categorized and ranked client requests based on client demographics.
 - 781 different request, combined into 50 categories.
 - Apply Ontology Engineering: systemic way of constructing ontological representation of domain [Grüninger, 1995].
- Develop Ontology of Social Service Needs (OSSN):
 - Focus on metrics for client needs.

Use Case 2: CHF Housing First

• Ontology Engineering (4 steps) [Grüninger, 1995]

Step 1: Motivational scenarios:

- a) How to evaluate intervention programs in the social service space?
- b) How to monitor client progress?
- c) How to monitor service delivery performance?

Step 2: Informal competency questions:

- a) What level of needs is client with ID="G123" requesting?
- b) What do "relatively homeless" clients need most?
- c) What motivates clients to use case management services?

Step 3: Ontology of Social Service Needs (OSSN)

Step 4: Answer Competency Questions

a) What level of needs is client with **ID="G123"** requesting?

Step 4: Answer Competency Questions

b) What do "relatively homeless" clients need most?

	<pre>SELECT (str(COUNT(?goal)) AS</pre>			<pre>?countg)</pre>	?goaltype
WHERE {					
	?agent	rdf:type		:RelHome	lessClient
	?agent	:hasGoal		?goal	
	?goal	rdf:type		?goaltype	9
	} GROUP BY	?goaltype			
	ORDER BY	DESC(?countg)			

Results

countg	goaltype
50	Child care
32	Clothing
10	Advocacy

٠

Step 4: Answer Competency Questions

c) What **motivates** clients to use **case management** services?

?goal

?constraint

?constraint

?service

:ServiceCaseManager .

SELECT DISTINCT ?motive

WHERE {

?motive	:motiveFor
?service	rdf:type
?goal	:constrainedBy
?resource	:requiredBy
?resource	:createdBy
ORDER BV ?m	notive

ORDER BY ?motive

Results

•

٠

٠

•

motive assistance during emergencies keep friends in the loop protect kids reduce stress for owning money resolve critical conflicts with landlord

Conclusion

- 1. Semantic Interoperability is needed to evaluate social service policies from multiple data sources.
- 2. Some ontologies exist to map existing systems (e.g. SMIS and HIFIS).
- 3. Some important components are missing (e.g. client needs).
- 4. Ontology Engineering is a systemic way of constructing ontologies.

Special thanks to...

- Calgary Homeless Foundation
 - Dr Nick Falvo, Dr Ali Jadidzadeh
 - Note: our findings do not reflect those of the Foundation.
- PhD Advisory Committee
 - Prof Mark S. Fox, Distinguished Professor of Urban Systems Engineering, Industrial Engineering, University of Toronto
 - Prof Michael Grüninger, Industrial Engineering, University of Toronto
 - Prof Marion Bogo, Factor-Inwentash Faculty of Social Work, University of Toronto
 - Dr Vicky Stergiopoulos, Physician-in-Chief and Clinician Scientist, CAMH
- Centre For Social Services Engineering, University of Toronto
 - http://csse.utoronto.ca
- Very special thanks to ...
 - Prof Eric Latimer, Director, Mental Health and Society Research Program, Douglas Mental Health University Institute, and Professor, Department of Psychiatry, McGill University.
 - Dr Vijay Mago, Associate Professor, Computer Science, Lakehead University

Thank You

Any Questions?

Discussion Questions

- 1. How are data schemas designed in the homeless domain?
- 2. What homeless intervention policies would benefit from an integrated approach?
- 3. What attributes are important for integrated policy evaluation?
- 4. What tools exist for integrating datasets in the homeless domain?
- 5. What database schemas exist now that can be extended to facilitate semantic interoperability?
- 6. What ontologies exist now in the homeless domain?

References

[Gaetz, 2016] Gaetz, S., Dej, E., Richter, T., & Redman, M. (2016). *The State of Homelessness in Canada 2016*. Toronto: Canadian Observatory on Homelessness Press.

[Grüninger, 1996] Grüninger, M., & Fox, M. S. (1995). Methodology for the Design and Evaluation of Ontologies. In *IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing*.

[HIFIS, 2015] Homeless Individuals and Families Information System (HIFIS) 3.8 Data Dictionary. (2015).

- [OEP, 2017] Open Eligibility Project (2017). Aunt Bertha, Public Benefit Corporation, Retrieved June 20, 2017, from http://openeligibility.org
- [Pourabbas, 2017] Pourabbas, E., D'Uffizi, A., & Ricci, F. L. (2017). A Conceptual Approach for Modelling Social Care Services: The INSPIRE Project. *Data Integration in the Life Sciences*, 53–66.
- [SMIS, 2014] City of Toronto (2014), Shelter Management Information System (SMIS), URL: http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=091dd4b4920c0410VgnVCM10000071d60f89RCRD, Accessed on: August 21, 2015:
- [Uschold, 1996] Uschold, M., & Grüninger, M. (1996). Ontologies: principles, methods, and applications. *Knowledge Engineering Review*, 11(2), 93–155.
- [Wang, 2015] Wang, Y., & Fox, M. S. (2015). A Shelter Ontology for Global City Indicators (ISO 37120) (EIL Working Paper No. August 26, 2015). Toronto, Ontario.